Sonnet を使った CRLH(Composite right/left-handed) 線路の解析

有限会社ソネット技研 石飛 徳昌 tovy@ieee.org

2011年9月25日

1

概要

文献 [1] に記載されている CRLH 線路の単位セ ルについて,より精度が高く簡単で Sonnet に適し た等価回路の抽出方法を提案し,その方法で等価回 路の抽出を行った.さらにその単位セルを多数縦列 接続した場合の解析法についても Sonnet を使った 回路解析モデルと,電磁界解析モデル,さらに境界 条件の違いについて検証した.

対象とする構造

目次

1

2	等価回路の抽出	2
2.1	Sonnet のモデル	2
2.2	等価回路の有効範囲	2
2.3	素子値抽出の方法	2
2.4	$L_{ m L}$ と Via の構造寸法 \ldots	3
2.5	位相定数 βp の抽出 \ldots	3
2.6	素子値の抽出............	3
3	9 セル線路の解析	4
3.1	三つの解析手法	4
3.2	解析結果と考察	5
4	まとめ	5
付録 A	Sonnet Emgraph のユーザー定義関	
	数への $eta p$ の定義	6
A.1	S パラメータと βp	6
A.2	Emgraph のユーザー定義関数....	6

A.3 数値計算における cos⁻¹ の範囲 . . . 6

付録 B L型2端子対回路の素子値抽出方法

	の検証	7
B.1	検証モデル	7
B.2	検証結果	7
B.3	理論付け	7

1 対象とする構造

文献 [1] の Fig.3.40. の単位セルとそれを 9 個 接続したモデルを再現してみる. 図 1 はその単位 セルの構造を示す. ここに p=6.1mm, $l_c=5.0$ mm, $w_c=2.4$ mm, $l_s=8.0$ mm, $w_s=1.0$ mm, $4 \lor 9 \lor 7 \lor i$ $9 \lor 7 \lor 7 \lor 9 \oslash 9$ 線路幅は 0.15mm, 線間は 0.1mm で, 基板材料は Rogers RT/duroid 5880 で $\varepsilon_r=2.2$, tan $\delta=0.0009$, h=62mil である.

図1 文献 [1] の Fig.3.40. 記載の単位セル

2 等価回路の抽出

文献 [1] では等価回路は図 2 の様に記載されて いる. この等価回路素子値を Sonnet を使って抽出 する.

2.1 Sonnet のモデル

図3から図6に Sonnet のモデルの詳細を示す. 側面の境界の影響を避けるためモデルの周囲には 2h 程度の空間を確保してある.

2.2 等価回路の有効範囲

図7は図6の解析結果である。6GHz以上の周波 数領域では、図2の回路トポロジでは実現できない 周波数特性が見られる。それ故、このモデルを等価 回路に沿って議論できるのは概ね 6GHz 以下の周 波数に限られる。

2.3 素子值抽出の方法

図 8 の様に,このモデルの入出力ポートを同相 で駆動した場合 (Even mode) と逆相で駆動した場 合 (Odd mode) を考える.本稿ではこれを Even mode,Odd mode と呼ぶことにする.等価回路上 は,図 9 の様に Even mode では $L_{\rm R}$ と $C_{\rm L}$ が短絡 され $C_{\rm R}$ と $L_{\rm L}$ だけを観測することができる.Odd mode では $C_{\rm R}$ と $L_{\rm L}$ が除外され $L_{\rm R}$ と $C_{\rm L}$ だけを 観測することができる.*¹それぞれの場合に,さら に角周波数 ω に応じて次表の様に等価回路素子値 を知ることができる.

図 2 文献 [1] の Table.3.2 記載の等価回路

	Thickness (mm)	Mat. Name	Erel	Dielectric Loss Tan
0 -	15.0 🔽	Unnamed	1.0	0.0
-	1.57 🔹	r5880	2.2	9.0e-4

図3 層構造の定義

Sizes				Covers
	Х	Y		Top Metal
Cell Size	0.1	0.1	□ Lock	Lossless -
Box Size	12.8	12.8	🗖 Lock	Bottom Metal
Num. Cells	128	128	□ Lock	Cu18um 💌
Set Box Size with Mouse				
Cell Size Calculator				C Symmetry

図 4 box の定義

図6 導体パターン

ω	Even	Odd
≈ 0	$\operatorname{Im}(Z) = \omega L_{\mathrm{L}}$	$\operatorname{Im}(Y) = \omega C_{\mathrm{L}}$
$\approx \omega_{ m se}, \omega_{ m sh}$	$\omega = \omega_{ m sh}$ の時	$\omega = \omega_{se}$ の時
	$\operatorname{Im}(Z) = \infty$	$\operatorname{Im}(Y) = \infty$
$\gg \omega_{ m se}, \omega_{ m sh}$	$\operatorname{Im}(Y) = \omega C_{\mathrm{R}}$	$\operatorname{Im}(Z) = \omega L_{\mathrm{R}}$

*1 付録 B 参照

図8 Even mode と Odd mode のモデル

図 9 Even mode と Odd mode の等価回路

しかしこのモデルが等価回路に沿って動作す るのは概ね 6GHz 以下であり、その領域では $\omega \gg \omega_{se}, \omega_{sh}$ と見なすことができない. それゆ え $C_{\rm R}, L_{\rm R}$ は

$$C_{\rm R} = 1/(\omega_{\rm sh}^2 L_{\rm L}) \tag{1}$$

$$L_{\rm R} = 1/(\omega_{\rm se}^2 C_{\rm L}) \tag{2}$$

として求めなければならない.

図 10 l_s に対する L_L の解析結果

2.4 L_L と Via の構造寸法

このモデルでは長さ l_s =8.0mm のスタブ先端が, 長さ h=1.57mm の VIA で接地されているから, L_L を抽出するに当たって VIA の構造寸法は重要であ る. ところが文献 [1] には VIA の構造が明記され ていない. そこで図 6 ではスタブ先端から 0.5mm の位置に一辺 0.8mm の正方形の VIA を配置した. その上で, l_s の長さを変化させて L_L をプロットし たのが図 10 である.*²

文献 [1] では l_s =8mm で L_L =3.38nH とあるが, これと解析結果は一致しない。そこで以後の検討で は L_L =3.38nH となるよう l_s =8.8mm とした。

2.5 **位相定数** βp **の抽出**

図 11 は, *³ 図 6 のモデルで l_s を約 8.8mm とした場合の βp である。図 12 には比較のため文献記載の βp を示す。*⁴ 少なくとも 6GHz 以下の周波数領域で両者は良く一致している。

2.6 素子値の抽出

図 8 の Even mode と Odd mode の解析結果が 図 13 である.

このグラフから $L_{\rm L}, C_{\rm L}, f_{\rm sh}, f_{\rm se}$ をそれぞれ読み 取り,次に式1から $C_{\rm R}$ を式2から $L_{\rm R}$ を求めた.

^{*2} 周波数 0.0159GHz で解析した。モデルの大きさに比べ て十分長い波長で、且つ 10^N/(2π) となる周波数を選ん だ。

^{*3} 付録 A 参照

^{*4} 比較を容易にするため、文献記載の図の軸を入れ替え、 βpの表示範囲を0~πに修正して表示してある。

図 11 単位セルの電磁界解析から抽出した位相定数 βp

図 12 文献 [1] の位相定数 *βp*

その他抽出した主なパラメータを文献記載の値と共 に次表にまとめる.

パラメータ	Sonnet	文献 [1]	
$C_{ m L}$	$0.716 \mathrm{pF}$	$0.68 \mathrm{pF}$	
$L_{ m L}$	$3.327 \mathrm{nH}$	$3.38 \mathrm{nH}$	
$C_{ m R}$	$0.405 \mathrm{pF}$	$0.5 \mathrm{pF}$	
$L_{ m R}$	$2.05 \mathrm{nH}$	$2.45 \mathrm{nH}$	
$Z_{ m L}/Z_{ m R}$	0.97	1.01	
$f_0 = \sqrt{\omega_{\rm se}\omega_{\rm sh}}$	$4.246 \mathrm{GHz}$	3.9GHz	

電磁界解析の結果から抽出した値と文献記載の値 とは無視しがたい差がある.文献 [1] 3.3.3 による と、先ず単位セルをインターデジタルキャパシタ部 のπ型等価回路と短絡スタブ部のT型等価回路に 分割し、次にそれぞれから等価回路素子を抽出し、 最後に両者の結果を回路論的に合成している.この

図 13 Even mode と Odd mode の電磁界解析結果

方法が正しいためにはインターデジタルキャパシタ 部と短絡スタブ部の接続面が純 TEM 線路でなけれ ばならない.

一方本稿の方法では単位セル全体の解析結果から 等価回路素子を抽出しているので、インターデジタ ルキャパシタ部と短絡スタブ部の接続面の伝搬モー ドが TEM モードである必要はない。それゆえ本稿 の方法により抽出した値の方がより正しいと考えら れる。

3 9 セル線路の解析

3.1 三つの解析手法

単位セルを9個接続した線路を解析するに当たり 三つの解析手法とその得失を紹介する.

■回路解析 図 14 のモデルでは,各セルを電磁界 解析し,その結果たる S パラメータを 9 個縦列接続 している.このモデルでの解析は非常に速いが,セ ル間の結合や放射は再現されない.

■カットオフ空間中の電磁界解析 図15は単位セ ルを9セル縦列接続したモデルを狭い空間に収めた モデルである。9セル全体を電磁界解析するのでセ ル間の結合も再現される。しかし解析空間は解析波 長に対してカットオフとなるように狭く設定される ので,放射の様子は正確には再現されない。解析に 必要なメモリは約90MBで,比較的短時間で解析 可能である。

PRJ 1 2 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 2 3 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 3 4 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 4 5 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 5 6 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 6 7 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 7 8 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 8 9 unit a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 PRJ 9 10 unit_a.son Hierarchy Sweep Ic=5.0 wc=2.4 ws=1.0 ls=8.0 DEF2P 1 10 Net Main Network

図 14 9 セル線路の回路解析モデル

■開放空間での電磁界解析 図 16 は解析空間を拡 張し,上部を開放境界としたモデルである.このモ デルでは放射まで正しく再現されるが,解析に必要 なメモリは約 400MB となり,解析時間は数時間に 及ぶ.

3.2 解析結果と考察

図 17 は上記の三つの方法で解析した結果で,比 較のために文献 [1] Fig.3.42(a) 記載の特性を図 18 に示した.

■1.5GHz 以下での S₂₁ 図 17 において 1.5GHz 以下での S₂₁ に注目すると図 16 の開放空間での結果が他と異なる.これはポート間のアイソレーションを完全に補正できていないことに起因すると思われる.このモデルで使われているポートのアイソレー

ションは通常-80dB 程度である.

■3GHz 以上での S₁₁ 図 14 の回路解析モデルと 電磁界解析の結果は概ね 3GHz 以上で乖離し始め る.その領域でも電磁界解析の結果は境界条件には ほとんど依存せず,結果の乖離は回路解析モデルだ けにしか生じていない.このことから原因は単位セ ル同士の結合が強まるためであろうと考えられる.

■4~GHz **での** S_{21} 開放空間の 4~5GHz での S_{21} は、カットオフ空間でのそれに比べやや小さい。こ れは放射損によるものであろう。

■4.7GHz 付近での S₁₁ 図 17 と図 18 では 4.7GHz 付近での S₁₁ に明確な違いがある.この違いは回路 解析モデルでも発生しているので、境界や実験環境 に起因するのでなく、もっと明確な何かの寸法やパ ラメータの食い違いがある可能性がある。例えば、 VIA の処理、あるいは線路両端の整合条件に起因す る可能性もある.

■放射 図 19 開放空間での電磁界解析の結果から 求めた放射の様子で、 $f_0 \approx 4$ GHz の前後で放射方向 が変化している様子がわかる.

4 **まとめ**

非常に小さな解析リソースで単位セルの等価回路 を容易に抽出できた.また9セルの線路についても 回路解析モデルで相当に実用的なレベルの精度が得 られることを示した.

図 15 カットオフ空間に置いた 9 セル線路の電 磁界解析モデル

図 16 開放空間での 9 セル線路の電磁界解析モデル

参考文献

 C.Caloz and T.Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2006.

付録 A Sonnet Emgraph のユーザー定義 関数への βp の定義

Sonnet の解析結果を表示するプログラムモジ ュール Emgraph には、S パラメータを引数とした 関数をユーザーが独自に定義してグラフとして表示 できる機能がある.本稿では位相定数 βp の表示に この機能を使った.

図 18 文献 [1] の 9 セル線路の特性

A.1 S パラメータと βp

*βp*はSパラメータから次式で求められる.

$$\cos^{-1}\frac{1 - S_{11}S_{22} + S_{21}S_{12}}{2S_{21}} \tag{3}$$

この式中の S パラメータの要素はもちろん複素数 である.

A.2 Emgraph のユーザー定義関数

Sonnet の Emgraph では [Equation]-[Manage Equations...] で "Equation Management" ダイア ログを開き, [New...] ボタンで新しい関数を定義す ることができる. 定義した関数は, 容易にグラフに プロットすることができる.

関数の引数には複素数が許される.しかし最終的 な関数の型は実数でなければならない.結果が複素 数になる関数では,デフォルトで実数成分が返され る.必要に応じて実数成分か虚数成分か real 関数, または imag 関数で明示指定することもできる.式 3 は,次のように定義すれば良い.

ACOS((1-(S11*S22)+(S21*S12))/(2*S21))

この ACOS 関数については注意すべき点がある.

A.3 数値計算における \cos^{-1} の範囲

図 20 を見るまでもなく $\cos \theta$ は, $-1 \sim 1$ の値 を持つ周期関数である. ところが一般に周期関数の 逆関数は複数の値をもつので,数値計算では逆関 数の値が定義される範囲を決めなければならない. $\cos^{-1}(x)$ の場合は $0 \sim \pi$ の範囲の値を持つように 定義される事が多い.

図19 9セル線路からの放射解析結果

付録 B L 型 2 端子対回路の素子値抽出方 法の検証

B.1 検証モデル

図 21 ではモデルの上下に全く同じ 2 端子対回路 が配置されている。その L 型 2 端子対回路は、端 子間を接続する抵抗 R_h と一方の端子を接地する 抵抗 R_v で構成されている。下半分のモデルの二つ の端子対は同相で駆動される Even mode、上半分 のモデルの二つの端子対は逆相で駆動される Odd mode となるようポートが接続されている。回路の リアクタンス分は無視できるよう。解析周波数は非 常に低く設定されている。このモデルで R_h と R_v をそれぞれ $lm\Omega \sim 1M\Omega$ まで変化させて解析した。

B.2 検証結果

図 22 は Even mode の結果で、端子から回路を 見たインピーダンス Z_{even} は R_v に等しい。またそ れは R_h に依存しない。

図 23 は Odd mode の結果で,端子から回路を見 たインピーダンス Z_{odd} は R_h に等しい.またそれ は R_v に依存しない.

B.3 理論付け

■同相 Even mode では R_h は短絡されるので,端 子から回路を見たインピーダンス Z_{even} は R_v に等 しくなる.

■逆相 Odd mode での端子から回路を見たイン ピーダンス Z_{odd} は、左側の端子から回路を見たイ ンピーダンス Z^+ と右側の端子から回路を見たイ ンピーダンス Z^- との差である。例えばこのモデル

図 21 L型2端子対回路の素子値抽出方法を検証 するモデル

 $\boxtimes 22$ Even mode $\mathcal{O} Z_{\text{even}}$

 $\boxtimes 23$ Odd mode $\mathcal{O} Z_{\text{odd}}$

では

$$Z^+ = R_{\rm h} + R_{\rm v} \tag{4}$$

$$Z^{-} = R_{\rm v} \tag{5}$$

$$Z^{+} - Z^{-} = R_{\rm h} + R_{\rm v} - R_{\rm v} \tag{6}$$

$$Z_{\rm odd} = R_{\rm h} \tag{7}$$

端子から回路を見たインピーダンス $Z_{
m odd}$ は $R_{
m h}$ に 等しくなる.